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Introduction
This set of presentations will include

• Introduction and Overview

• Classical and Quantum Networks

• Algorithms

• A selection of Attack vectors and their Defence
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Introduction
 The potential for realizing quantum-based networks and distributed 

systems has now been realized through reports of networks in excess of 
2000km and commercial quantum based private communication networks 
reported as complete. 

 Quantum based cloud services are now under development on a 
commercial basis and a quantum-based internet is proposed for the 
future. 

 Associated with these and other developments in for example:
 types of computer
 programming paradigms
 operating systems
 event ordering 

issues emerge as new quantum concepts are integrated into the 
cybersecurity landscape.



Introduction
 In this workshop, aimed primarily at researchers new to quantum 

concepts, we consider a range of underlying concepts employed in the 
development of ‘secure’ systems for both classical and quantum-based 
networks and distributed systems.

 From a quantum perspective we will discuss 
different types of qubit, qudits, superposition 

discrete and continuous states

mixed states

multipartite states

entanglement, 

gates 

measurement 

and their incorporation into the cybersecurity environment.



Introduction
 Research in quantum distributed systems and networks is now said to be in its 

second wave developing the potential for applications in, for example 
 satellite communication

 quantum-based resources 

 secure communication

 …

 We compare and contrast classical and quantum communication systems with a 
view to: 
 identifying similarities and differences that exist between the two

 to present a selection of advantages and disadvantages in employing such 
paradigms 

 to consider a selection of vulnerabilities from each, within for example an attacker 
defender perspective. 

 From a hands on perspective, we seek to present a selection of activities that 
participants can engage in, in order to develop and extend their understanding in 
working with quantum systems.



Cyber Security

• Assets

• Motivation

• Attackers and Vulnerabilities



Cyber security

“the protection of information systems from theft or damage to the 
hardware, the software, and to the information on them, as well as 
from disruption or misdirection of the services they provide”

M. Gasser, 1988, Building a secure computer system, van Nostrand Reinhold.

Information security – “the practice of preventing unauthorized 
access, use, disclosure, disruption, modification, inspection, 
recording or destruction of information”



Assets
Hardware

Servers

Switches 

Sensors 

Software
Mission critical applications 

Support systems

Confidential data
Genome data

Medical records

Assets need to be protected if replacement is expensive or if the asset is 
important to the owner. Sensors, for example, may be inexpensive but in mission 
critical systems damage due to not protecting them may be very costly 



Motivation
 Motivating factors for using such assets include 

 Sharing of resources
 Reduction in cost
 Increase in computational processing
 Reliability

 With threat modelling for such systems we seek to establish:
 What data do we need/want to protect
 Where are the information flows
 What functions are engaged in the processing of data through the employment of services

 Cloud services

 conveyance of packets

 What systems do I have to rely upon 

 ‘Assets should be protected from unwanted access, use, disclosure, alteration, 
destruction and/or theft resulting in loss to the organisation be it actual or in 
terms of reputation’ Wiki



Attackers and Vulnerabilities
 Attacks can take various forms:

 Denial of Service

 Malware 

 Phishing

 Session hijack

 Man in the middle

 Insider attacks

 Are these applicable to quantum networks?



Cyber security
Naturally following from the previous statements we meet the following 
concepts:

• Authentication
• Establishing for example that I am who I say that I am and that I am entitled to gain access to 

some entity such as my computer
• Confidentiality

• Any data sent between two parties is not seen by unauthorised observers
• Integrity 

• Establishing that the message sent is the same as the message received
• Non repudiation

• Ensuring that the sender of some information cannot deny that they sent the information
• Accessibility

• If I am entitled for example to use a service then I want to be able to do so
• Anonymity 

• In for example voting schemes where one might also like confidentiality

One tool that is often quite useful is cryptography



Protection
Central to the protection of for example networks we have a need for: 

• Physical Security

• For example if I have a communication system reliant upon satellites 
being in certain positions and or uncompromised I have to ensure that 
these requirements are met or quickly reinstated  

• Trust

• I have to trust those that can access my systems generally in a covert 
way, for example who is updating my computer system

• Cryptography

• A long standing tool in maintaining a degree of control and defence of 
information systems

• Protocols

• The way in which we process data matters



Quantum Processing and Tools
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Quantum Processing
• Quantum processing promises the possibility for obtaining solutions 

to a range of ‘difficult’ problems. 

• From a security perspective this involves the possibility for
• Breaking Asymmetric Key Algorithms via Shor’s Algorithm

• The RSA algorithm based on the IFP (Integer Factorisation Problem)

• The El Gamal algorithms based on the DLP (Discrete Logarithm Problem)

• Obtaining secure communication channels for ‘free’

• Authentication, confidentiality, integrity, … 

• Employing quantum based encryption schemes

• Detecting eavesdroppers on a channel

• Detecting intruders in a system

• Developing new applications in a range of different fields
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Quantum Tools
The tools employed include and are not limited to

• Superposition

• Entanglement

• Error Correction

• Entanglement Swapping

• Teleportation 

• Flying and Stationary Qubits

• Parallelism

• Interference
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A Comparison of Classical and Quantum States
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Classical & Quantum Representations

Classical

• Bits, nibbles, bytes, ….
• 0’s and 1’s aka cbits
• 4 bits and 8 bits, …

• Communication of information 
is achieved via binary bits (cbits) 
which are grouped into 
manageable chunks

• Information is processed using 
gates and communication 
channels

Quantum

• Quantum bits are used, referred to 
as qubits, which may be organised 
into manageable chunks via tensor 
products

• Information may be encoded using 
a superposition of quantum bits, 
(qubits) and organised via the use 
of tensor products

• Information is processed using 
gates and communication channels
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Classical & Quantum Representations

Classical

• Bits, nibbles, bytes, ….
• Classical bits (cbits) are scalars

• Examples of gates: logic gates
• NOT

• AND

• OR

• NOR

• NAND

• XOR

Quantum

• Quantum bits (qubits) are 
vectors they have magnitude 
and direction, magnitude = 1

• qubits have 2 degrees of 
freedom (think of as movement 
in the x direction and movement 
in the y direction

• Examples of gates: Matrices

• Pauli gates, Hadamard gate, 
CNOT gate, Phase gate, …
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Quantum States
Standard cbits are represented as vectors in a Hilbert Space: 
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Quantum States
Superposition

From the Z basis                (or the X basis ) qubits are formed as a 

superposition of their basis vectors
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Lecture - Quantum Postulates 21

Postulate 1

State Space

• Associated to any isolated physical system is a complex 

Hilbert Space (a complex vector space with inner product) 

known as the state space of the system.  The system is 

completely described by its state vector, which is a unit 

vector in the systems state space

Nielsen and Chuang, Quantum Computation and Quantum Information, CUP, 2000/2010



Quantum States
Superposition

Qubits also have operator representations called density operators 

and Bloch Sphere representations in 3d space
• Pure states        map to the surface
• Mixed states 

map to the interior of the Bloch Sphere
• Mixed states are Hyperbolic space objects

Ungar, A. (2002) The Hyperbolic Geometric Structure of the Density Matrix for Mixed State Qubits. Found. of Phys. 32, 11
22
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Pure States and Mixed States

Given an ensemble of quantum states we may obtain an overall 
quantum state 

A state is said to be pure if and only if the trace of      is 1 and mixed if 
the trace of     lies strictly between 0 and 1

Note that the trace of a quantum state is 1: 
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Postulate 4 – Composite Systems

The state space of a composite physical system is the tensor 

product of the state spaces of the component physical 

systems.  Moreover if we have systems numbered 1 through 

n, and system number i is prepared in the state        , then the 

joint state of the total system is 

Nielsen and Chuang, Quantum Computation and Quantum Information, CUP, 2000/2010
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Quantum States
For multipartite states we use tensor products to obtain vectors of the form

With corresponding density operators

In which

This leads us to the concept of entanglement, a major resource in QIP 
(Quantum  Information Processing) 
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Entanglement
Two fundamental views

• Algebraically no common vector factors, irreducible, prime states

• Correlation View – Entangled photons are seen to be correlated or anti-

correlated (both spin up or both spin down as opposed to one spin up 

and the other spin down)

• Examples:

• Bell states, GHZ states, W states

• Partial entanglement for subsystems of a general system also used
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Entanglement
From an algebraic perspective entangled states and primes share a 

common property in that their status is dependent upon the space in 

which they are perceived to belong.

For example
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Entanglement
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 

Local and Global Operators

Likewise Bell states for example , are said to be entangled provided that 

they are restricted to the local action of operators from  ( )   ( ),  a 

qubit space, however if we 

B H B H H

extend the operator space to B(   )  then the 

Bell states are said to be separable. 

It is the potential for access to global operators that characterises a state as 

either entangled or separable

H H



Gates
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The Action of a Matrix on a vector
Matrices: A 2x2 matrix, (2 rows and 2 columns

Example: Let                     and                , then the action of A on           is 

defined to be:

30

a b
A

c d

 
  
 

x

y


 
  
 



   (definition)
a b x ax by

A
c d y cx dy


     

      
     



Quantum Gates
In order to describe the development and change of a state we employ 
gates/operators. Central to our discussions will be the Pauli Gates
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Quantum Gates
The CNOT Gate (controlled NOT gate)
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Quantum Gates
The Hadamard Gate 

Note:

and
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Quantum Gates
The Phase Gate

In which 

Each of the above gates are examples of unitary gates 

They are reversible, unlike many of the classical gates
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Quantum Gates
The Projection Gate / Operator

Examples

Projection gates are in general not reversible
• They are in general examples of Hermitian / Self Adjoint Operators
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Postulate 2 - Nielsen and Chuang

Evolution

• The evolution of a closed system is described by a unitary 

transformation.  That is, the state         of the system at time 

t1 is related to the state           of the system at time t2 by a 

unitary operator U which depends only on the times t1 and 

t2 ,

Nielsen and Chuang, Quantum Computation and Quantum Information, CUP, 2000/2010
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• A selection of quantum properties and tools



Quantum Properties
Some Useful Properties that we have to work with:

• No Cloning

The No Cloning Theorem states that it is impossible to copy general 
quantum states, with a ‘Unitary’ copier. For non orthogonal pure states, 
copying is impossible, without a loss in fidelity for any copier

• Measurement (in general) leads to change

So if you try to measure a quantum state you will in general change the 
state – see measurement postulate below

These properties have been employed in, for example, quantum key 
agreement protocols such as: BB84, B92, E91, … 
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Quantum Supremacy
• Quantum Supremacy

• 2018 Google 49 qubits, IBM 51, ? 53 qubit

• 2019 Google claim quantum supremacy, using 54-qubit Sycamore processor

• Performs calculation in 200 seconds rather than 10,000 years by the most powerful  
supercomputer

• IBM challenge the fidelity of the work, claiming Google “failed to fully account for 
plentiful disk storage” 

• The calculation involved generating random numbers  Quantum Supremacy using a 
programmable superconducting processor, Nature, vol574,24th October 2019, 
https://doi.org/10.1038/s41586-019-1666-5
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Quantum Tools
The tools employed include and are not limited to

• Superposition

• Entanglement

• Error Correction

• Entanglement Swapping

• Teleportation 

• Flying and Stationary Qubits

• Parallelism

• Interference
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Quantum Communication

• Not Explicitly Using Entanglement
• La Palma To Tenerife experiment

• Line of sight, flying and stationary qubits

• Dark fibre channels

• Key Agreement Protocols
• BB84, B92

• Explicitly Using Entanglement
• Shanghai to Beijing Quantum Network

• Key Agreement Protocols
• E91

• Security protocols – for example authentication
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The Measurement Postulate
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Postulate 3 - Measurement

• Quantum measurements are described by a collection {Mm} 

of measurement operators.  These are operators acting on 

the state space of the system being measured.  The index m 

refers to the measurement outcomes that may occur in the 

experiment

| |U   
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Postulate 3 – Measurement continued

• If the state of the quantum system is        immediately 

before the measurement then the probability that result m 

occurs is given by

and the state of the system after the measurement is 

*( ) | |m mp m M M   
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Postulate 3 – Measurement continued

• The measurement operators satisfy the completeness 

equation

• The completeness equation expresses the fact that 

probabilities sum to one

• This equation being satisfied for all        is equivalent to the 

completeness equation 
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Activity 1
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